#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @Copyright (C) ansjer cop Video Technology Co.,Ltd.All rights reserved. @AUTHOR: ASJRD018 @NAME: AnsjerFormal @software: PyCharm @DATE: 2019/4/1 9:41 @Version: python3.6 @MODIFY DECORD:ansjer dev @file: xls.py @Contact: chanjunkai@163.com """ import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() # 1 input image channel, 6 output channels, 5*5 square convolution # kernel self.conv1 = nn.Conv2d(1, 6, 5) self.conv2 = nn.Conv2d(6, 16, 5) # an affine operation: y = Wx + b self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): # max pooling over a (2, 2) window x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) # If size is a square you can only specify a single number x = F.max_pool2d(F.relu(self.conv2(x)), 2) x = x.view(-1, self.num_flat_features(x)) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def num_flat_features(self, x): size = x.size()[1:] # all dimensions except the batch dimension num_features = 1 for s in size: num_features *= s return num_features net = Net() print(net)