| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 | #!/usr/bin/env python3  # -*- coding: utf-8 -*-  """@Copyright (C) ansjer cop Video Technology Co.,Ltd.All rights reserved.@AUTHOR: ASJRD018@NAME: AnsjerFormal@software: PyCharm@DATE: 2019/4/1 9:41@Version: python3.6@MODIFY DECORD:ansjer dev@file: xls.py@Contact: chanjunkai@163.com"""import torchfrom torch.autograd import Variableimport torch.nn as nnimport torch.nn.functional as Fclass Net(nn.Module):    def __init__(self):        super(Net, self).__init__()        # 1 input image channel, 6 output channels, 5*5 square convolution        # kernel        self.conv1 = nn.Conv2d(1, 6, 5)        self.conv2 = nn.Conv2d(6, 16, 5)        # an affine operation: y = Wx + b        self.fc1 = nn.Linear(16 * 5 * 5, 120)        self.fc2 = nn.Linear(120, 84)        self.fc3 = nn.Linear(84, 10)    def forward(self, x):        # max pooling over a (2, 2) window        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))        # If size is a square you can only specify a single number        x = F.max_pool2d(F.relu(self.conv2(x)), 2)        x = x.view(-1, self.num_flat_features(x))        x = F.relu(self.fc1(x))        x = F.relu(self.fc2(x))        x = self.fc3(x)        return x    def num_flat_features(self, x):        size = x.size()[1:]  # all dimensions except the batch dimension        num_features = 1        for s in size:            num_features *= s        return num_featuresnet = Net()print(net)
 |