| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 | 
							- #!/usr/bin/env python3  
 
- # -*- coding: utf-8 -*-  
 
- """
 
- @Copyright (C) ansjer cop Video Technology Co.,Ltd.All rights reserved.
 
- @AUTHOR: ASJRD018
 
- @NAME: AnsjerFormal
 
- @software: PyCharm
 
- @DATE: 2019/4/1 9:41
 
- @Version: python3.6
 
- @MODIFY DECORD:ansjer dev
 
- @file: xls.py
 
- @Contact: chanjunkai@163.com
 
- """
 
- import torch
 
- from torch.autograd import Variable
 
- import torch.nn as nn
 
- import torch.nn.functional as F
 
- class Net(nn.Module):
 
-     def __init__(self):
 
-         super(Net, self).__init__()
 
-         # 1 input image channel, 6 output channels, 5*5 square convolution
 
-         # kernel
 
-         self.conv1 = nn.Conv2d(1, 6, 5)
 
-         self.conv2 = nn.Conv2d(6, 16, 5)
 
-         # an affine operation: y = Wx + b
 
-         self.fc1 = nn.Linear(16 * 5 * 5, 120)
 
-         self.fc2 = nn.Linear(120, 84)
 
-         self.fc3 = nn.Linear(84, 10)
 
-     def forward(self, x):
 
-         # max pooling over a (2, 2) window
 
-         x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
 
-         # If size is a square you can only specify a single number
 
-         x = F.max_pool2d(F.relu(self.conv2(x)), 2)
 
-         x = x.view(-1, self.num_flat_features(x))
 
-         x = F.relu(self.fc1(x))
 
-         x = F.relu(self.fc2(x))
 
-         x = self.fc3(x)
 
-         return x
 
-     def num_flat_features(self, x):
 
-         size = x.size()[1:]  # all dimensions except the batch dimension
 
-         num_features = 1
 
-         for s in size:
 
-             num_features *= s
 
-         return num_features
 
- net = Net()
 
- print(net)
 
 
  |